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DEVELOPMENT OF NATURAL DISTURBANCES

IN A HYPERSONIC BOUNDARY LAYER ON A SHARP CONE

UDC 532.526D. A. Bountin, A. A. Sidorenko, and A. N. Shiplyuk

Experimental data on the location of the laminar–turbulent transition and development of
natural disturbances in a laminar hypersonic boundary layer on a sharp thermally insulated
cone with a half-angle of 7◦ are presented. The existence of the second mode of disturbances
is confirmed. It is shown that the transition is determined by the first mode of disturbances.
The experimental data are in good agreement with theoretical calculations.

Development of space technology and aviation requires the study of the processes that occur in a
hypersonic boundary layer and cause the laminar–turbulent transition. The mechanisms of transition at
hypersonic velocities have been poorly studied. This is related to the fact that experiments and theoretical
analysis are very complicated. The physical processes of the laminar–turbulent transition at hypersonic
velocities are qualitatively different from those typical of subsonic and supersonic flows. The main reason for
this difference is the appearance of instability modes of the acoustic type (second, third modes, etc.), which
were theoretically predicted by Mack. According to the calculations of [1], the second mode of disturbances
plays the dominating role in the laminar–turbulent transition beginning from the Mach number M ≈ 4.

The second mode was first found by Kendall in 1967 in experiments on a flat plate. He showed [2] using a
cone model that this type of instability plays the determining role in the laminar–turbulent transition for M =
8.5. At the same time, for M = 4.5 and 5.6, the expected domination of the second mode was not observed.
The data obtained for these Mach numbers were in qualitative agreement with Mack’s calculations [1]. The
experiments of [3] confirmed the existence of the second mode of disturbances and gave additional data on
the stability of a hypersonic boundary layer. In particular, Mack’s conclusion about the destabilization of
the second mode upon cooling the model surface was confirmed. The studies of [4] on a cylinder and cones
with half-angles of 7◦ for M = 8 may be mentioned as the most complete data. These experiments yielded
the amplitude amplification rates for disturbances with frequencies corresponding to the first and second
modes and the curves of neutral stability. In addition, the effect of nose bluntness and the angle of attack
on the model on the boundary-layer stability was studied on cones. The dominating role of the second mode
in the laminar–turbulent transition on a sharp cone was demonstrated. In the experiments with a hollow
cylinder [5], the expected domination of the second mode was not observed. The calculations of Malik [6]
show that first-mode disturbances may exert a decisive effect on the laminar–turbulent transition for the
case of an adiabatic wall on a sharp cone up to M ≈ 7. The second-mode disturbances were not observed
by Wendt and Simen [7] on a flat plate for M = 5, which is possibly related to the limited frequency range
of the transducer used. The stability of the boundary layer with an adverse pressure gradient (the pressure
increased downstream) on a cone for M = 5.91 was studied in NASA on an M6NTC quiet wind tunnel [8].
The data obtained confirm the main conclusions of Mack’s calculations. It is argued [8] that the transition is
caused by the second mode, but this cannot be concluded unambiguously on the basis of the data given in
that paper.
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The objective of the present work is to obtain additional experimental data on stability of a hypersonic
boundary layer: to determine the transition Reynolds numbers, the mean and fluctuating characteristics of
the boundary layer, and the amplification rate of disturbances.

1. Experimental Equipment. The experiments were conducted in the T-326 hypersonic blowdown
wind tunnel of the Institute of Theoretical and Applied Mechanics of the Siberian Division of the Russian
Academy of Sciences for a free-stream Mach number M∞ = 5.92, unit Reynolds number Re1∞ = 12.5·106 m−1,
stagnation pressure P0 = 9.8 · 105 Pa, and stagnation temperature T0 = 380 K. The values of the stagnation
parameters P0 and T0 were maintained constant during the experiment within 0.9% for temperature and
within 0.1% for pressure. The free-stream characteristics M∞ and Re1∞ were determined from the measured
P0 and T0 and the known dependence M∞ = f(P0) obtained by studying the flow field in the test section
of the T-326 wind tunnel. The oscillations were measured by a constant-temperature hot-wire anemometer,
which had a frequency range from 0 to 500 kHz. Single-wire probes were used; they were manufactured from
a tungsten wire 5 µm in diameter and 1.3 mm long. The wire overheating was τ = (Tw −Te)/T0 = 0.4 (Tw is
the wire temperature and Te is the gas-recovery temperature on the wire); therefore, it was assumed during
data processing that the hot-wire anemometer is sensitive only to mass-flow oscillations, and the receptivity
coefficient was assumed to be equal to 0.25 [9].

During the measurement of transverse distributions in the boundary layer, the hot-wire probe moved
away from the model wall with a step of 0.05 mm. The error of coordinate determination was 0.01 mm. The
zero position of the probe at the model surface was verified using the electric contact.

In the course of the experiment, the variable and constant components of the electric signal from
the hot-wire anemometer output were recorded into the computer memory by means of two 12-bit analog-
to-digital converters. To obtain oscillation spectra, the variable signal was digitized with a frequency of
1.25 MHz, which allowed us to perform a spectral analysis up to a frequency of 612 kHz.

The model was a sharp steel cone 0.5 m long with a half-angle of 7◦. The bluntness radius of the model
nose tip was less than 0.1 mm. For model mounting at zero angles of attack and sideslip, four orifices were
made over the model radius at an identical distance from each other. The zero angle was determined from
the condition of equal static pressure in all orifices. The error of the angle of model inclination was 0.1◦.
Since the model was rather large, it did not have enough time to warm up in the beginning of the experiment;
therefore, an electric heater was placed inside the model to satisfy the condition of adiabaticity. The wall
temperature Tw ≈ 320 K was controlled by a thermocouple built into the model and located near the model
surface.

2. Location of the Laminar–Turbulent Transition. The data on the laminar–turbulent transition
were obtained by a Pitot probe whose thickness was 0.7 mm. A strain-gage transducer with the range of
0–105 Pa was used for pressure measurements. The measurement error was 0.5%.

During the experiment, the probe moved inside the boundary layer over the cone surface along its
generatrix. The error of coordinate determination was 0.1 mm.

The maximum in the Pitot pressure distribution P ′0 along the x coordinate corresponded to the end of
the laminar–turbulent transition. The measurements were performed within the range Re1∞ = (12.2–22.6)×
106 m−1 [P0 = (9.8–19.5) · 105 Pa].

Figure 1 shows the transition Reynolds number Retr based on the parameters at the boundary-layer
edge versus the Mach number at the boundary-layer edge. Figure 1 was borrowed from [6], and the data
obtained in the present study were added.

It is seen that the transition Reynolds numbers obtained in the T-326 wind tunnel (which is not a
quiet facility) are much higher than curve 3. Possible reasons are discussed below.

3. Spectra of Disturbances in the Boundary Layer. The distributions of disturbance spectra
in the boundary layer were measured in 17 cross sections. For six of them, Fig. 2 shows the distributions
of the root-mean-square amplitudes of integral fluctuations of the mass flow 〈ρu〉 normalized to the mean
mass-flow rate (Fig. 2a) and the mean velocities U (Fig. 2b). The ordinate axis is the y coordinate normalized
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Fig. 1. Transition Reynolds number versus the Mach number at the boundary-layer edge: curves 1 and 2 refer to
calculations by the method of en (n = 10) for the adiabatic and cooled walls, respectively, and curve 3 refers to
the experimental data for conventional wind tunnels; the points refer to the results of flight tests (4), experimental
data for quiet wind tunnels (5), and results of the present tests in T-326 for Re1∞ = (12.2–22.6) · 106 m−1 (6).

Fig. 2. Distribution of the root-mean-square integral oscillations (a) and mean velocity (b) across the boundary
layer.

to the boundary-layer thickness δ. The y coordinate was counted from the model surface perpendicular to
its axis; R is the root of the Reynolds number: R =

√
Re1ex (Re1e is the unit Reynolds number based on the

parameters at the boundary-layer edge and x is the coordinate along the cone generatrix). The parameters
at the boundary-layer edge were found by inviscid conical flow calculations. The boundary-layer thickness
was determined from the mean-velocity distribution under the condition U = 0.99Ue, where Ue is the stream
velocity near the boundary-layer edge. Curve 1 in Fig. 2b corresponds to the velocity profile for a laminar
boundary layer calculated on the basis of boundary-layer equations; curve 2 is the calculation of the velocity
profile for a turbulent boundary layer by the formula U/Ue = (y/δ)1/7 taking into account the existence of a
laminar sublayer; the points are experimental data. It is seen from Fig. 2b that the boundary layer remains
laminar for R < 2300: the measured velocity profiles coincide with the calculated laminar profile (curve 1),
and the oscillations are small and concentrated in a rather narrow region in the vicinity of y ≈ 0.8δ. For
R > 2300, the profiles of the mean velocities and amplitudes of integral oscillations become more full, and the
level of oscillations increases almost twice as compared to the laminar region, which indicates the beginning of
boundary-layer turbulization. In addition, a dramatic increase in the boundary-layer thickness was observed.
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Fig. 3. Distribution of the spectrum of natural disturbances in the layer of the maximum oscillations.

To determine the amplification rates of instability waves, we performed the measurements in the layer of
the maximum disturbances using the standard technique (see, e.g., [10]). It follows from the experimental data
obtained that the relative vertical coordinate y/δ of the position of the layer of the maximum disturbances
and the mean voltage at the hot-wire probe located in this layer are constant for a hypersonic laminar
boundary layer. Therefore, further experiments were performed as follows. First, the position of the layer
of the maximum disturbances and the mean voltage in this layer were determined. Then, the probe moved
along the cone generatrix to keep the voltage constant. The oscillation spectrum was recorded with a step
of approximately 2 mm along the x coordinate. The position of the maximum of disturbances was checked
several times in the course of the experiment, and the position of the probe was corrected if necessary. These
measurements were not performed in the regions of transition and developed turbulence.

The distributions of the spectra of natural disturbances in the layer of the maximum oscillations
are plotted in Fig. 3 (A is the Fourier amplitude of mass-flow fluctuations). It is seen from Fig. 3 that the
disturbances of all frequencies increase. We note that a peak of disturbances is observed at frequencies of 250–
350 kHz. The estimate of the wavelength λ of these disturbances with the use of the phase velocity calculated
by the locally parallel linear theory of stability shows that λ is approximately equal to two boundary-layer
thicknesses (the phase velocity is Cx = 0.92; the method of Cx calculation is similar to the technique used
in [11]). This value of λ corresponds to the theoretical [1] and experimental values of the wavelength of the
second mode of disturbances [12]. The dimensionless frequency F = 2πf/(Re1eUe) = (1.0–1.5) · 10−4 is also
in agreement with the second-mode frequency. Hence, the peak at high frequencies corresponds to the second
mode of disturbances. We can trace the evolution of this peak: an increase in amplitude and a shift of the
maximum of disturbances toward lower frequencies. This behavior is typical of the second-mode disturbances.
As was noted above, the wavelength of this mode is approximately 2δ; therefore, the wavelength increases
downstream with increasing δ, and the frequency decreases.

4. Amplification Rates of Disturbances. To calculate the amplification rates of disturbance waves,
the amplitude distributions of oscillations in terms of R measured in the maximum of disturbances (Fig. 3)
were smoothed and approximated by a polynomial. The amplification rates were calculated using the formula
−αi = 1/(2A)(∂A/∂R).

The results of data processing are shown in Figs. 4–6. Figure 4 shows that the amplification rates of
low-frequency disturbances corresponding to the first mode remain almost unchanged and are greater than
zero within the entire range of measurements. The amplification rates of high-frequency disturbances have
a clear maximum and become negative with increasing R. A peak in the frequency range corresponding
to the second mode of disturbances is clearly seen in Figs. 5 and 6. Though the main energy belongs to
low-frequency oscillations, the second-mode waves were most unstable, which corresponds to theoretical pre-
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Fig. 4 Fig. 5

Fig. 4. Distributions of the amplification rates of disturbance waves for different frequencies.

Fig. 5. Distributions of the amplification rates of disturbance waves for different values of R.

Fig. 6. Dependences of the amplification rates (curves 1, 3, and 4) and wave amplitude (curve 2) on the
dimensionless frequency for R = 1600: curves 1 and 2 refer to experiments and curves 3 and 4 refer to
calculations [θ = 0 (3) and 50◦ (4)]; the points are local maxima corresponding to the second mode.

dictions. A decrease in frequency is observed in Fig. 5 with increasing R for oscillations with the maximum
amplitude amplification rates, which is also in agreement with theoretical results. It is seen in Fig. 6 that the
numerical and experimental data on −αi are in good qualitative and quantitative agreement. The calculation
was performed on the basis of the locally parallel linear theory of stability. The disagreement of the experi-
mental and theoretical frequencies corresponding to the amplitudes of waves with the maximum amplification
rates can be also noted in Fig. 6. The reason may be the neglect of the effect of flow nonparallelism on the
boundary-layer stability in calculations.

The difference in experimental and theoretical values of −αi, which was also observed in [12], may be
caused by an incorrect comparison of these data. The numerical data were obtained for a wave with a certain
angle of inclination θ, whereas the values of αi based on experimental data were determined on the basis of
integral-amplitude distributions, since it is impossible to identify waves with a certain angle of inclination
in the course of measurement of the characteristics of natural disturbances. For a correct comparison, it is
necessary to use experiments with the technique of artificial disturbances or correlation measurements.

It follows from the data obtained (see Fig. 3) that the main energy of free-stream oscillations is
concentrated on low frequencies. Therefore, the initial amplitudes of the first-mode disturbances in the
boundary layer are much higher than the second-mode amplitudes. Though the second-mode disturbances
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increase faster (see Figs. 4–6), because of the low initial amplitudes of these disturbances, the main role in
the laminar–turbulent transition belongs to slowly growing first-mode disturbances; this is a possible reason
for the downstream shift of the transition region. This indicates that the effect of the first- and second-
mode disturbances on the laminar–turbulent transition cannot be estimated without taking into account the
level and spectrum of the initial disturbances of the boundary layer. Therefore, it is necessary to study
the boundary-layer receptivity to free-stream perturbations, since the level and spectrum of boundary-layer
oscillations depend on the free-stream disturbances.

Conclusions. Thus, the existence of the second mode is experimentally verified in the present paper.
The amplification rates of the wave amplitudes for the first and second modes of instability are determined.
It is shown that the second-mode disturbances have greater amplification rates, but despite this fact, the
transition is determined by the first mode. Good agreement of the experimental data and calculations by the
locally parallel linear theory of stability is obtained.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01-
00735) and International Science and Technology Center (Grant No. 128).
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